Temperature Sensors ## **TEMPERATURE CIRCUITS** **2-WIRE CIRCUIT:** A Wheatstone bridge is the most common approach for measuring an RTD. As $R_{\scriptscriptstyle T}$ increases or decreases with temperature, $V_{\scriptscriptstyle out}$ also increases or decreases. Use an opamp to observe $V_{\scriptscriptstyle out}$. Lead wire resistance, $L_{\scriptscriptstyle I}$ and $L_{\scriptscriptstyle 2}$ directly adds to the RTD leg of the bridge. **3-WIRE CIRCUIT:** In this approach, L_1 and L_3 carry the bridge current. When the bridge is in balance, no current flows through L_2 so no L_2 lead resistance is observed. The bridge becomes unbalanced as R_T changes. Use an op-amp to observe V_{out} and prevent current flow in L_2 . The effects of L_1 and L_3 cancel when $L_1 = L_3$ since they are in separate arms of the bridge. **4-WIRE CIRCUIT:** A 4-wire approach uses a constant current source to cancel lead wire effects even when $L_1 \neq L_4$. Use an op-amp to observe V_{out} and prevent current flow in L_2 and L_3 . ## **TEMPERATURE SWITCH** The following circuit causes an output voltage to rail whenever the temperature of the RTD rises above a fixed value T_1 . The open-collector output simplifies the interfacing of this circuit with additional electronics. ## **TEMPERATURE SWITCH WITH HYSTERESIS** The following circuit uses positive feedback from the output to self heat the RTD enough to develop a hysteresis in the behavior of the switch. Once on, the temperature must drop low enough to offset the self heating before the switch will disable.